The topic of this post focuses on a general concept that is heavily used in the wild topology world. Writing this post has been a fun exploration I’ve been meaning to spend time on for a while now. I will assume that all spaces involved are Hausdorff.

**Definition 1:** A path is (*homotopically) reduced* if either is constant or if there is no interval such that is a null-homotopic loop, i.e. if has no null-homotopic subloops.

I’ll usually just refer to a homotopically reduced path as a *reduced* *path*.

There are some other, more geometric, notions of “homotopically reduced” that are good for other purposes but this one is particularly relevant for one-dimensional spaces. Soon, we’ll combine new stuff with an old post to see that every path in a one-dimensional Hausdorff space is path-homotopic to a **unique** reduced path (unique up to reparameterization). Just as the uniqueness of reduced words in free groups is central to their theory and applications, the same kind of uniqueness for homotopy classes is important for proving things about fundamental groups of one-dimensional spaces.

**History:** The idea behind reduced paths in the one-dimensional case is based off of Curtis and Fort’s work in [2] from the 1950’s. I should note that Curtis-Fort use the notion of a “normal loop” which permits constant subpaths and is not exactly the same as in Definition 1. The modern definition of “reduced path,” which is far more effective for applications, does not permit constant subpaths. This modern version appears to appear first in Section 2 of Eda’s 2002 paper [3]. There is also a nice proof in Cannon and Conner’s outstanding 2006 paper [1].

**Fun question to ponder:** What do you think a homotopically reduced map should be for ?

Let’s start with some basic observations.

- A homotopically reduced path that is not a constant path must be
*nowhere constant*, i.e. there is no open set on which is constant. For then we could find such that is the constant loop, which is null-homotopic. - In general, it’s possible for a path-homotopy class to be represented by many different reduced paths. For instance let be the cylinder and for , consider the paths and . Now the family of paths , are all reduced paths that represent the same path-homotopy class. See the gif below.
It’s worth pointing out that the cylinder is a 2-dimensional space (with whatever notion of topological dimension is your favorite).

- If is the Griffiths twin cone with basepoint , then every non-trivial homotopy class has no reduced representative. This is true since every loop satisfying is null-homotopic in . You can start with any loop and begin pinching off null-homotopic subloops and you’ll never stop or arrive at a reduced loop. In fact it’s worse than that. No loop based at except for the constant loop will be reduced. Interestingly, only
elements of the fundamental group of the harmonic archipelago fail to have reduced representatives. Can you find one?*some*

What I’d like to do in this post is discuss the existence of reduced paths in homotopy classes. **When can we be sure that a path is path-homotopic to some reduced path?**

Say we start with a non-constant path . We want to “pinch off” or delete subloops which are null-homotopic loops. If you want to pinch things off one-by-one you’ll end up in an infinite deletion procedure, which could get pretty messy. So I think we should try to delete infinitely many subloops at a time. For example, if you have an infinite concatenation of inverse pairs you can delete the inverse pairs one-by-one or you could just delete them all at the same time. One difficulty we could face is that if is an infinite concatenation of null-homotopic loops, this product itself might not be null-homotopic. This phenomenon occurs precisely when the space in question fails to be homotopically Hausdorff, a concept very relevant to this post.

## A Lemma about deleting constant subloops

**Lemma 2:** For every path , there exists a non-decreasing continuous function and a nowhere constant path such that .

*Proof.* Let be the set of such that is locally constant at , i.e. there is an open neighborhood of on which is constant. Let be the connected components of and notice that if , then and must have disjoint closures. We give the natural linear ordering inherited from . For each , pick a rational number . We define as follows:

- for each , we set .
- if in are consecutive (no element of is between them) then for , we use the linear function . Doing so adds the line segment connecting and to the graph of .
- If we haven’t defined yet, then is the limit point of a monotone sequence of intervals in , in the sense that . Therefore, we define .

A little real analysis will finish the proof that is a well-defined, continuous, non-decreasing function. As a specific example, if is the complement of the middle-third Cantor set, and we choose the to be the dyadic rational that is the midpoint of . In this case, will be a modified version of the Cantor function.

In general, is always a kind of step function like the Cantor function that is constant on the components of .

Let’s finish this argument. Since is constant precisely on the components of . Since is a quotient map, and is constant on the fibers of , there exists a unique map such that .

How do we know is nowhere constant? Suppose otherwise that there exists such that . Since is non-decreasing, continuous, and onto there exists such that , , and . Now and so we must have . By the definition of , this means that is a single point in , which contradicts . Thus cannot be constant on any open subset of .

**Here’s why that lemma is a useful and necessary starting place:** Since , we have that and are path-homotopic by the homotopy . So, if we’re given a path , we can go ahead and delete a maximal family of constant subloops in one single step without changing the path-homotopy class. Hence, toward our goal for this post, we may assume from the start that is nowhere constant.

But….to proceed we should dissect the proof to formalize the idea of “pinching off subloops.”

**Definition 3:** The function doesn’t need to be constructed. In fact, given any open set in and the choice of a point in each connected component of , we can construct the function . We’ll refer to such a function as a *collapse function for **.*

Notice that if is a collapse function for and , then .

**Lemma 4 (Pinch-off Lemma):** Suppose is a path and is a closed set such that for each connected component , is a loop, that is, maps the two points of to a single point. If is a collapse function for , then there exists path such that .

*Proof.* Suppose for . Define an intermediate path so that

In other words, is the same as except that you force it to be constant on each component of .

Because is continuous, is continuous. Moreover, is now constant on each component of . Since is a quotient map and is constant on the fibers of , there exists a unique path such that . Thus

Now this new pinch-off lemma is, in a way, much stronger than our first lemma. But we must be responsible with all this power. It just says that we can always pinch of subloops to obtain some continuous path. It doesn’t say that the result will be homotopic to the original….The resulting path will be “obviously” path-homotopic to the original only if we’re pinching off just finitely many null-homotopic subloops.

## Maximal Cancellations

**Definition 5:** A *cancellation* of a path is a collection of disjoint, connected open sets in such that for each , the subpath is a null-homotopic loop.

Let be the set of all cancellations of . Notice that has a natural partial order: given , we say if for every , there exists a such that .

**Definition 6:** A cancellation is *maximal* if it is a maximal element of the partially ordered set .

**Observation 7:** If is a maximal cancellation of , then the elements of have disjoint closures. For if we have , then would be the concatenation of two null-homotopic loops and would therefore be null-homotopic. This would mean we could define by replacing and with . This would give , violating the maximality of .

So, we want to know two things:

- When does a path admit a maximal cancellation?
- If does admit a maximal cancellation , and we form using a collapsing function for , must be path-homotopic to ?

We’ll work to answer these questions in Part II.

**References:**

[1] J.W. Cannon, G.R. Conner, On the fundamental groups of one-dimensional spaces, Topology Appl. 153 (2006) 2648–2672.

[2] M.L. Curtis, M.K. Fort, Jr., The fundamental group of one-dimensional spaces, Proc. Amer. Math. Soc. 10 (1959) 140–148.

[3] K. Eda, The fundamental groups of one-dimensional spaces and spatial homomorphisms, Topology Appl. 123 (2002) no. 3, 479-505.

Pingback: Homotopically Reduced Paths (Part II) | Wild Topology

Pingback: Homotopically Reduced Paths (Part III) | Wild Topology