Category Archives: homotopically Hausdorff

Topologized Fundamental Groups: The Whisker Topology, Part 3

In Part 1 and Part 2, I gave detailed introductory exposition about the whisker topology on the fundamental group. In general, this topologized fundamental group is a left topological group and therefore a homogeneous space. Moreover, whenever this group is … Continue reading

Posted in Covering Space Theory, Fundamental group, Higher Homotopy groups, homotopically Hausdorff, Infinite Group Theory, Infinite products, topological fundamental group, Topological groups | 1 Comment

Homotopically Hausdorff Spaces (Part II)

In my post homotopically Hausdorff spaces (Part I), I wrote about the property which describes the existence of loops that can be deformed into arbitrarily small neighborhoods but which are not actually null-homotopic, i.e. can’t be deformed all the way back … Continue reading

Posted in Algebraic Topology, earring space, Fundamental group, Group homomorphisms, harmonic archipelago, homotopically Hausdorff, Homotopy theory | Tagged , , , | 2 Comments