Another fascinating space that receives a lot of attention is the so-called harmonic archipelago which is the following subspace of
.
You can describe the construction like this: Start by drawing the usual earring space onto a solid disk
in the xy-plane. Now between the 1st and 2nd hoops, draw a small disk and push it up so that it becomes a smooth hill with unit height. Do the same thing between the 2nd and 3rd hoops of
and then the 3rd and 4th hoops and so on. Notice that the earring
is naturally a subspace of
and each hill is hollow underneath. Although the height of the hills always remains at
, the projections of the hills to the xy-plane have diameters that tend to
.
If you can believe it, the fundamental group , which we might refer to as the archipelago group, is even crazier than the earring group
!
First, let’s get some notation down:
- Let
be the n-th circle so that
with basepoint
.
- Let
be the smaller copies of the earring space.
- Let
be the open disk between
and
which contains the n-th hill in the archipelago.
- Let
be the open disk which is the upper half of the hill
.
Now some observations:
1) is path-connected and locally path connected.
2) is non-compact since it does not include limit points on the z-axis. For instance, the sequence given by the top of the hills converges to
which is not included. This means that if
is compact and
is continuous, then the image
can only hit finitely many of the open disks
.
3) If is the loop that traverses
once counterclockwise in the xy-plane, then
can be deformed over finitely many hills (but not infinitely many!). So the homotopy classes
in
are the same for all
but yet are non-trivial since deforming
over every hill should violate continuity.
Lemma 1: Every based loop is homotopic to a loop
for each
.
Proof: As mentioned above, the image of any based loop can intersect at most finitely many of the disks
. Thus
must have image in one of the spaces that looks like this:
In such a space you can deformation retract each of the infinitely many chopped hills $B_n\backslash D_n$, which are now cylinders down to height . Therefore,
is homotopic rel. basepoint to a loop in a space that looks like this:
Notice the holes get smaller and smaller so this subspace is a deformation retract of one of the form
The retraction is given by expanding each little circle in the xy-plane to the entire hole usually present in the earring space. At this point, we can choose to be as large as we want (by adding some hills back in). The resulting space looks like the one-point union of a smaller copy of the earring and a bumpy region that is homotopy equivalent to a circle.
Now deform the bumpy region onto the smallest circle which bounds the hills, namely
. The composition of these deformation retracts provides a homotopy of
to a loop in
. Since we could choose
to be arbitrarily large, the lemma is proven.
Lemma 1 basically says that every based loop is homotopic to an arbitrarily small loop.
Corollary 2: The homomorphism on fundamental groups induced by inclusion is surjective and
for all
.
More generally, if , then
whenever
. However, the fundamental group
is way bigger than the free subgroup
so we should not expect that these are the only elements of
.
Let’s make sure no other surprising homotopies of loops can show up.
Let be the natural retraction which collapses
homeomorphically onto
. These maps induce retractions
which together form a directed system:
Notice that if is the homomorphism induced by inclusion, then we have, by Corollary 2, that
for each
. Consequently, we get a canonical homomorphism
from the direct limit:
Theorem 3: is an isomorphism of groups.
Proof: Since is surjective (Corollary 2), so is
. Since each
is a retraction it suffices to show that if
and
, then
for some
. Since
, there is a homotopy
contracting
to the constant loop at
. By compactness, the image of
can intersect only finitely many hills. Apply the composition of deformation retracts from the proof of Lemma 1 to obtain an
and a homotopy
which contracts
to the constant loop
. Thus
in
.
Identifying as a direct limit illustrates a kind of “universal property.”
Corollary 4: Suppose is a space which is first countable at it’s basepoint
. For every shrinking sequence of based loops
such that
for all
, there is a unique induced homomorphism
such that
.
Here is one last interpretation of Theorem 4: Recall that we can represent a homotopy class as a sequence
, i.e. where
is the word in the free group
on letters
obtained by removing all appearances of the letter
from
. Also, the number of times a given letter
can appear in
stabilizes as
(in other words,
is locally eventually constant).
If , let
and if
, let
be the reduced word in
obtained after each letter
is replaced by
. Now let
where the first possible non-trivial word appears in the m-th position. It is pretty straightforward to check that is still a locally eventually constant element of
.
Corollary 5: If corresponds to the sequence
, then
if and only if there is an
such that
is the trivial element of
.
I’m going to call the next statement a Corollary because technically it does follow from Corollary 5 if you’re comfortable with which elements of the earring group are trivial. However, it does follow more simply from observing that is obtained by attaching a sequence of 2-cells to the subspace
, which deformation retracts on to
. Recall that when you attach 2-cells to a space
along a set of attaching loops
,
, then an application of the van Kampen theorem is that the resulting space has fundamental group
where
is the conjugate closure of
. Combining this with some of the above ideas gives:
Corollary 6: is the conjugate closure of the free subgroup of
generated by the elements
,
.
There’s also an important algebraic consequence of Theorem 3. A group is locally free if every finitely generated subgroup of
is a free group. Even though the earring group
is not free, it is locally free. It’s a nice exercise to show that any direct limit of locally free groups is a locally free group. Hence, we have the following.
Theorem 7: The archipelago group is locally free.
References
Apparently the first appearance of the harmonic archipelago (where it was also named) was in the following unpublished note:
[1] W.A. Bogley, A.J. Sieradski, Universal Path Spaces, Unpublished preprint. http://people.oregonstate.edu/~bogleyw/research/ups.pdf
Some unpublished notes on understanding the fundamental group of the harmonic archipelago:
[2] P. Fabel, The fundamental group of the harmonic archipelago, preprint. http://arxiv.org/abs/math/0501426.
Acknowledgements.
Thanks to Moaaz AlQady for sending me some corrections (11/29/20).
Pingback: The harmonic archipelago group is not free | Wild Topology
Pingback: The Uncountability of Harmonic Archipelago Group | Wild Topology
Pingback: Homomorphisms from the harmonic archipelago group to finite groups | Wild Topology
Pingback: The Griffiths Twin Cone | Wild Topology
Pingback: Homotopically Hausdorff Spaces I | Wild Topology
Pingback: Homotopically Hausdorff Spaces II | Wild Topology
Pingback: What is an infinite word? (Part I) | Wild Topology
Reblogged this on Mathematical Story Teller..
LikeLike
Pingback: Homotopically Reduced Paths: Part I | Wild Topology
Pingback: The Griffiths twin cone and the harmonic archipelago have isomorphic fundamental group (Part 1) | Wild Topology
Pingback: Topologized Fundamental Groups: The Whisker Topology, Part 2 | Wild Topology