HOPF FIBRATION APPENDIX

PATRICK GILLESPIE

We construct a representative of the homotopy class of the Hopf map. Let D^2 denote the closed unit 2-disk, $D^2 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$. Let $C = D^2 \times [-1,1]$, that is, C is a closed solid cylinder. We begin by listing functions that will be used. For any space X, let

$$\Delta_X: X \to X \times X$$

be the diagonal map. Let $\Phi:(C,\partial C)\to(\mathbb{R}^3\cup\{\infty\},\infty)$ be defined by

$$\Phi(x,y,z) = \left(\frac{x}{1-x^2-y^2}, \frac{y}{1-x^2-y^2}, \frac{z}{1-z^2}\right)$$

for $(x,y,z) \in \operatorname{int}(C)$ and $\Phi(x,y,z) = \infty$ for $(x,y,z) \in \partial C$. Note that Φ restricted to the interior of C is a homeomorphism $\operatorname{int}(C) \to \mathbb{R}^3$. Identify $\mathbb{R}^3 \cup \{\infty\}$ with $S^3 = \{(u,v) \in \mathbb{C}^2 : ||u||^2 + ||v||^2 = 1\}$ by the homeomorphism $\Psi : \mathbb{R}^3 \cup \{\infty\} \to S^3$,

$$\Psi(x,y,z) = \left(\frac{2x+2yi}{1+x^2+y^2+z^2}, \frac{2z+i(-1+x^2+y^2+z^2)}{1+x^2+y^2+z^2}\right)$$

where $\Psi(\infty) = (0, i)$. The map Ψ is simply the inverse of the stereographic projection $S^3 \to \mathbb{R}^3 \cup \{\infty\}$, where S^3 is viewed as a subset of \mathbb{C}^2 . Let $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be the extended complex plane. Let $\psi : \widehat{\mathbb{C}} \to S^2$ be the homeomorphism

$$\psi(x+iy) = \left(\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}, \frac{-1+x^2+y^2}{1+x^2+y^2}\right).$$

Let $\mu: \widehat{\mathbb{C}} \times (\mathbb{C} \setminus 0) \to \widehat{\mathbb{C}}$ be complex multiplication where we set $\mu(\infty, z) = \infty$ for all $z \in \mathbb{C} \setminus 0$. Recall that the Hopf map $h: S^3 \to S^2$ can be defined by $h = \psi \circ h_0$, where $h_0: S^3 \to \widehat{\mathbb{C}}$ is

$$h_0(u, w) = u/w$$

for $(u, w) \in S^3 \subseteq \mathbb{C}^2$. Define functions $h_1, h_2 : S^3 \to \widehat{\mathbb{C}}$ by

$$h_1(u, w) = u/\|w\|$$

$$h_2(u, w) = ||w||/w$$

and where we define $h_2(u,0) = 1$. Note that h_2 is not in general continuous at points $(u,0) \in S^3$. We clearly have that

$$h = \psi \circ \mu \circ (h_1 \times h_2) \circ \Delta_{S^3}$$
.

Define a reparameterization $g_1: [-1,1] \to [-1,1]$ by

$$g_1(s) = \begin{cases} \frac{3}{2}s + \frac{1}{2} & \text{if } s \in [-1, -\frac{1}{3}] \\ 0 & \text{if } s \in [-\frac{1}{3}, \frac{1}{3}] \\ \frac{3}{2}s - \frac{1}{2} & \text{if } s \in [\frac{1}{3}, 1] \end{cases}$$

Date: August 19, 2021.

Set $G_1: [-1,1] \times I \to [-1,1]$ to be the homotopy $G_1(s,t) = (1-t)s + tg_1(s)$ between the identity on [-1,1] and g_1 . Define $H_1: D^2 \times [-1,1] \times I \to D^2 \times [-1,1]$ by $H_1 = \mathrm{id}_{D^2} \times G_1$. Define another reparameterization $g_2: [-1,1] \to [-1,1]$ by

$$g_2(s) = \begin{cases} -1 & \text{if } s \in [-1, -\frac{1}{3}] \\ 3s & \text{if } s \in [-\frac{1}{3}, \frac{1}{3}] \\ 1 & \text{if } s \in [\frac{1}{3}, 1], \end{cases}$$

and similarly, set $G_2(s,t)=(1-t)s+tg_2(s)$ and $H_2=\mathrm{id}_{D^2}\times G_2$. Let $\varphi=\frac{\sqrt{5}-1}{2}$. The reason we will need this constant is due to the map $\Phi:(C,\partial C)\to(\mathbb{R}^3\cup\{\infty\},\infty)$. A point $(x_1,y_1,z_1)\in C$ satisfying $\sqrt{x_1^2+y_1^2}=\varphi$ is mapped by Φ to a point (x_2,y_2,z_2) in \mathbb{R}^3 satisfying $\sqrt{x_2^2+y_2^2}=1$. Define a function $G_3:I^2\to I$ by

$$G_3(s,t) = \begin{cases} 0 & \text{if } s \in [0, \varphi t] \\ \frac{1}{1-t}(s-\varphi t) & \text{if } s \in [\varphi t, 1-t+\varphi t] \\ 1 & \text{if } s \in [1-t+\varphi t, 1] \end{cases}$$

for $t \in [0,1)$ and set

$$G_3(s,1) = \begin{cases} 0 & \text{if } s \in [0,\varphi) \\ 1 & \text{if } s \in [\varphi,1]. \end{cases}$$

Note that G_3 is not continuous at the point $(\varphi, 1) \in I^2$ but is continuous everywhere else. We now use G_3 to define a function $H_3: D^2 \times [-1, 1] \times I \to D^2 \times [-1, 1]$. For $(x, y) \in D^2$, write $(x, y) = (r \cos \theta, r \sin \theta)$. Let $z \in [-1, 1]$ and $t \in I$. Define

$$H_3(r\cos\theta, r\sin\theta, z, t) = (G_3(r, t)\cos\theta, G_3(r, t)\sin\theta, z).$$

Let $H_4: C \times I \to C$ be the composition of H_2 and H_3 , that is,

$$H_4(x,t) = H_3(H_2(x,t),t)$$

where $x \in C$ and $t \in I$. Let $h'_1 = h_1 \circ \Psi \circ \Phi$ and $h'_2 = h_2 \circ \Psi \circ \Phi$. Define $H: (C \times I, \partial C \times I) \to (S^2, (0, 0, -1))$ by

$$H = \psi \circ \mu \circ (h'_1 \times h'_2) \circ (H_1 \times H_4) \circ \Delta_{C \times I}.$$

We will show H is continuous, in which case it defines a homotopy between $h \circ \Psi \circ \Phi$ (which we are identifying with the Hopf map) and $g = H(x,1) : (C,\partial C) \to (S^2,(0,0,-1))$, the map described in the blog post.

Proposition 0.1. The function H is continuous.

Proof. In the defintion of H, the only functions which are not continuous are H_4 and h'_2 . The function H_4 is not necessarily continuous at points in

$$B_1 = \{(x, y, z, 1) \in C \times I : \sqrt{x^2 + y^2} = \varphi\}$$

and h_2' is not necessarily continuous at points

$$B_2 = \{(x, y, 0, t) \in C \times I : \sqrt{x^2 + y^2} = \varphi\}.$$

Therefore it suffices to check continuity of H at points in B_1 and at points $a \in C \times I$ such that $H_4(a) \in B_2$. However, $\{a \in C \times I : H_4(a) \in B_2\} \subset B_2$, hence it suffices to check continuity of H at exactly $B_1 \cup B_2$. To see that H is continuous at points in B_2 , note that if $x \in B_2$, then $h'_1 \circ H_1(x) = \infty \in \widehat{\mathbb{C}}$. Since $h'_1 \circ H_1$ is continuous,

and h_2' has image in the unit circle $\{z \in \widehat{\mathbb{C}} : ||z|| = 1\}$, hence is bounded away from 0, we have that

$$\mu \circ (h_1' \times h_2') \circ (H_1 \times H_4) \circ \Delta_{C \times I}$$

is continuous at points in B_2 , and thus so is H.

Write $B_1 = B_1' \cup B_1''$ where

$$\begin{split} B_1' &= \{(x,y,z,1) \in C \times I: \sqrt{x^2 + y^2} = \varphi, \, z \in [-1/3,1/3]\} \\ B_1'' &= \{(x,y,z,1) \in C \times I: \sqrt{x^2 + y^2} = \varphi, \, z \in [-1,-1/3) \cup (1/3,1]\} \end{split}$$

We have that $h'_1 \circ H_1$ maps points of B'_1 to $\infty \in \widehat{\mathbb{C}}$, and so completely analogous to the case of B_2 , H is continuous at points in B'_1 . Lastly, if $(x,y,z,1) \in B''_1$, let $U \subset D^2 \times [-1,-1/3) \cup (1/3,1]$ be a neighborhood of (x,y,z) in C. Let N_ε be the set of points in C whose distance to ∂C is less than ε . Then for any $\varepsilon > 0$, due to the homotopy H_2 , there exists $\delta > 0$ so that H_4 maps $U \times (1-\delta,1]$ into N_ε . Since $\Psi \circ \Phi$ maps N_ε to an open neighborhood of the basepoint (0,i) of $S^3 \subseteq \mathbb{C}^2$, and h_2 is continuous in a neighborhood of (0,i), we have that $h'_2 \circ H_4$ is continuous at points in B''_1 . Hence H is continuous at points in B''_1 .