

A characterization of the unique path lifting property for the whisker topology

Jeremy Brazas

Georgia State University, Dept. of Mathematics and Statistics

PTM-DMV
September 18, 2014

Introduction

Throughout this talk X will be a path-connected metric space and $x_0 \in X$.

Introduction

Throughout this talk X will be a path-connected metric space and $x_0 \in X$.

Many generalizations of classical covering space theory have appeared in the literature. The intended application determines when one theory is more suitable than another.

- ▶ Overlays [Fox,72]
- ▶ Coverings for uniform spaces and/or topological groups [Lubkin,62][Berestovskii, Plaut,01,07,11][Brodskiy, Dyda, Labuz, Mitra,10]
- ▶ Semicoverings [Brazas,11]
- ▶ Coverings defined in terms of unique lifting properties [Fischer, Zastrow,07][Brodskiy, Dyda, Labuz, Mitra,12][Dydak,11]

Introduction

Throughout this talk X will be a path-connected metric space and $x_0 \in X$.

Many generalizations of classical covering space theory have appeared in the literature. The intended application determines when one theory is more suitable than another.

- ▶ Overlays [Fox,72]
- ▶ Coverings for uniform spaces and/or topological groups [Lubkin,62][Berestovskii, Plaut,01,07,11][Brodskiy, Dyda, Labuz, Mitra,10]
- ▶ Semicoverings [Brazas,11]
- ▶ Coverings defined in terms of unique lifting properties [Fischer, Zastrow,07][Brodskiy, Dyda, Labuz, Mitra,12][Dydak,11]

We will address the following question: To what extent can we classify the subgroup structure of $\pi_1(X, x_0)$ using maps having unique lifting of paths and homotopies of paths?

Introduction

Throughout this talk X will be a path-connected metric space and $x_0 \in X$.

Many generalizations of classical covering space theory have appeared in the literature. The intended application determines when one theory is more suitable than another.

- ▶ Overlays [Fox,72]
- ▶ Coverings for uniform spaces and/or topological groups [Lubkin,62][Berestovskii, Plaut,01,07,11][Brodskiy, Dyda, Labuz, Mitra,10]
- ▶ Semicoverings [Brazas,11]
- ▶ Coverings defined in terms of unique lifting properties [Fischer, Zastrow,07][Brodskiy, Dyda, Labuz, Mitra,12][Dydak,11]

We will address the following question: To what extent can we classify the subgroup structure of $\pi_1(X, x_0)$ using maps having unique lifting of paths and homotopies of paths?

Disk-coverings

Definition: [Dydak,11] A **disk-covering** is a map $p : E \rightarrow X$ such that for every $e \in E$

$$\begin{array}{ccc} & (E, e) & \\ \exists ! \tilde{f}_e \nearrow & \nearrow & \downarrow p \\ (D^2, x) & \xrightarrow{f} & (X, p(e)) \end{array}$$

Disk-coverings

Definition: [Dydak,11] A **disk-covering** is a map $p : E \rightarrow X$ such that for every $e \in E$

$$\begin{array}{ccc} & (E, e) & \\ \exists ! \tilde{f}_e \nearrow & \nearrow & \downarrow p \\ (D^2, x) & \xrightarrow{f} & (X, p(e)) \end{array}$$

Since $[0, 1]$ is a retract of D^2 , $p : E \rightarrow X$ uniquely lifts all paths just as a covering map does.

Disk-coverings

Definition: [Dydak,11] A **disk-covering** is a map $p : E \rightarrow X$ such that for every $e \in E$

$$\begin{array}{ccc} & (E, e) & \\ \exists ! \tilde{f}_e \nearrow & \nearrow & \downarrow p \\ (D^2, x) & \xrightarrow{f} & (X, p(e)) \end{array}$$

Since $[0, 1]$ is a retract of D^2 , $p : E \rightarrow X$ uniquely lifts all paths just as a covering map does.

Let $\mathbf{DCov}(X)$ be the category of disk coverings. A morphism of disk-coverings over X is a commuting triangle

$$\begin{array}{ccc} E & \xrightarrow{f} & E' \\ & \searrow p & \swarrow p' \\ & X & \end{array}$$

Disk-coverings

Every disk covering $p : E \rightarrow X$ yields a group action

$$\pi_1(X, x_0) \times p^{-1}(x_0) \rightarrow p^{-1}(x_0) \text{ given by } [\alpha] \cdot e = \tilde{\alpha}_e(1)$$

with stabilizer $H = \text{Im}(p_* : \pi_1(E, e) \hookrightarrow \pi_1(X, x_0))$.

Disk-coverings

Every disk covering $p : E \rightarrow X$ yields a group action

$$\pi_1(X, x_0) \times p^{-1}(x_0) \rightarrow p^{-1}(x_0) \text{ given by } [\alpha] \cdot e = \tilde{\alpha}_e(1)$$

with stabilizer $H = \text{Im}(p_* : \pi_1(E, e) \hookrightarrow \pi_1(X, x_0))$.

Result: a faithful *monodromy* functor

$$\mu : \mathbf{DCov}(X) \rightarrow \pi_1(X, x_0)\mathbf{Set}$$

Disk-coverings

Every disk covering $p : E \rightarrow X$ yields a group action

$$\pi_1(X, x_0) \times p^{-1}(x_0) \rightarrow p^{-1}(x_0) \text{ given by } [\alpha] \cdot e = \tilde{\alpha}_e(1)$$

with stabilizer $H = \text{Im}(p_* : \pi_1(E, e) \hookrightarrow \pi_1(X, x_0))$.

Result: a faithful *monodromy* functor

$$\mu : \mathbf{DCov}(X) \rightarrow \pi_1(X, x_0)\mathbf{Set}$$

Typically, μ is not well-behaved (neither full nor essentially surjective).

Generalized covering maps

Definition: [Fischer, Zastrow,07] A **generalized covering map** is a map $p : \tilde{X} \rightarrow X$ such that

1. \tilde{X} is path-connected and locally path-connected,
2. p is a continuous surjection,
3. For every path-connected locally path-connected space Y , point $\tilde{x} \in \tilde{X}$, and map $f : (Y, y) \rightarrow (X, p(\tilde{x}))$ such that $f_*(\pi_1(Y, y)) \subseteq p_*(\pi_1(\tilde{X}, \tilde{x}))$, there is a unique lift $\tilde{f} : (Y, y) \rightarrow (\tilde{X}, \tilde{x})$ such that $p \circ \tilde{f} = f$.

$$\begin{array}{ccc} & (\tilde{X}, \tilde{x}) & \\ \exists ! \tilde{f} \nearrow & \nearrow & \downarrow p \\ (Y, y) & \xrightarrow{f} & (X, p(\tilde{x})) \end{array}$$

Generalized covering maps

Definition: [Fischer, Zastrow,07] A **generalized covering map** is a map $p : \tilde{X} \rightarrow X$ such that

1. \tilde{X} is path-connected and locally path-connected,
2. p is a continuous surjection,
3. For every path-connected locally path-connected space Y , point $\tilde{x} \in \tilde{X}$, and map $f : (Y, y) \rightarrow (X, p(\tilde{x}))$ such that $f_*(\pi_1(Y, y)) \subseteq p_*(\pi_1(\tilde{X}, \tilde{x}))$, there is a unique lift $\tilde{f} : (Y, y) \rightarrow (\tilde{X}, \tilde{x})$ such that $p \circ \tilde{f} = f$.

$$\begin{array}{ccc} & (\tilde{X}, \tilde{x}) & \\ \exists ! \tilde{f} \nearrow & \nearrow & \downarrow p \\ (Y, y) & \xrightarrow{f} & (X, p(\tilde{x})) \end{array}$$

If \tilde{X} is simply connected, this is a generalized **universal** covering.

Generalized covering maps

Definition: [Fischer, Zastrow,07] A **generalized covering map** is a map $p : \tilde{X} \rightarrow X$ such that

1. \tilde{X} is path-connected and locally path-connected,
2. p is a continuous surjection,
3. For every path-connected locally path-connected space Y , point $\tilde{x} \in \tilde{X}$, and map $f : (Y, y) \rightarrow (X, p(\tilde{x}))$ such that $f_*(\pi_1(Y, y)) \subseteq p_*(\pi_1(\tilde{X}, \tilde{x}))$, there is a unique lift $\tilde{f} : (Y, y) \rightarrow (\tilde{X}, \tilde{x})$ such that $p \circ \tilde{f} = f$.

$$\begin{array}{ccc}
 & (\tilde{X}, \tilde{x}) & \\
 & \nearrow \exists! \tilde{f} & \downarrow p \\
 (Y, y) & \xrightarrow{f} & (X, p(\tilde{x}))
 \end{array}$$

If \tilde{X} is simply connected, this is a generalized **universal** covering.

GCov(X) \subset **DCov**(X) is the category of generalized coverings over X .

Generalized covering maps

Theorem: $\mu : \mathbf{GCov}(X) \rightarrow \pi_1(X, x_0)\mathbf{Set}$ is *fully faithful* and there is a coreflection functor $lpc : \mathbf{DCov}(X) \rightarrow \mathbf{GCov}(X)$ such that the diagram of functors commutes up to natural isomorphism

$$\begin{array}{ccc} \mathbf{DCov}(X) & \xrightarrow{lpc} & \mathbf{GCov}(X) \\ \mu \searrow & & \swarrow \mu \\ & \pi_1(X, x_0)\mathbf{Set} & \end{array}$$

Generalized covering maps

Theorem: $\mu : \mathbf{GCov}(X) \rightarrow \pi_1(X, x_0)\mathbf{Set}$ is *fully faithful* and there is a coreflection functor $lpc : \mathbf{DCov}(X) \rightarrow \mathbf{GCov}(X)$ such that the diagram of functors commutes up to natural isomorphism

$$\begin{array}{ccc} \mathbf{DCov}(X) & \xrightarrow{lpc} & \mathbf{GCov}(X) \\ \mu \searrow & & \swarrow \mu \\ & \pi_1(X, x_0)\mathbf{Set} & \end{array}$$

Consequences:

1. A generalized covering map $p : \tilde{X} \rightarrow X$ is characterized *up to homeomorphism* by the stabilizer subgroup $H = p_*(\pi_1(\tilde{X}, \tilde{x}))$.

Generalized covering maps

Theorem: $\mu : \mathbf{GCov}(X) \rightarrow \pi_1(X, x_0)\mathbf{Set}$ is *fully faithful* and there is a coreflection functor $lpc : \mathbf{DCov}(X) \rightarrow \mathbf{GCov}(X)$ such that the diagram of functors commutes up to natural isomorphism

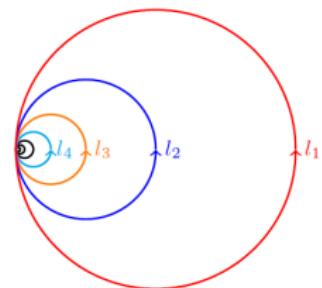
$$\begin{array}{ccc}
 \mathbf{DCov}(X) & \xrightarrow{lpc} & \mathbf{GCov}(X) \\
 \mu \searrow & & \swarrow \mu \\
 & \pi_1(X, x_0)\mathbf{Set} &
 \end{array}$$

Consequences:

1. A generalized covering map $p : \tilde{X} \rightarrow X$ is characterized *up to homeomorphism* by the stabilizer subgroup $H = p_*(\pi_1(\tilde{X}, \tilde{x}))$.
2. Any attempt to characterize subgroups of $\pi_1(X, x_0)$ using maps which uniquely lift paths and homotopies of paths is absorbed by the theory of generalized coverings.

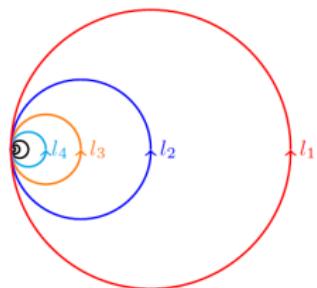
Existence of generalized covering subgroups

Example: [Fischer, Zastrow,07] Let $F_\infty = \langle [l_n] | n \geq 1 \rangle$ be the free group generated by loops traversing the n -th circle of the Hawaiian earring \mathbb{H} .



Existence of generalized covering subgroups

Example: [Fischer, Zastrow,07] Let $F_\infty = \langle [l_n] | n \geq 1 \rangle$ be the free group generated by loops traversing the n -th circle of the Hawaiian earring \mathbb{H} .

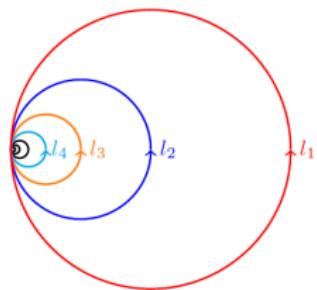


There cannot be a generalized covering $p : \tilde{X} \rightarrow \mathbb{H}$ such that $p_*(\pi_1(\tilde{X}, \tilde{x})) = F_\infty$ since any such map could not possibly have unique lifting:

$l_1 \cdot l_2 \cdot l_3 \cdots$ and $\{l_1 \cdot l_2 \cdots l_n | n \geq 1\}$ lift to top. indistinguishable points in $p^{-1}(x_0)$

Existence of generalized covering subgroups

Example: [Fischer, Zastrow,07] Let $F_\infty = \langle [l_n] | n \geq 1 \rangle$ be the free group generated by loops traversing the n -th circle of the Hawaiian earring \mathbb{H} .



There cannot be a generalized covering $p : \tilde{X} \rightarrow \mathbb{H}$ such that $p_*(\pi_1(\tilde{X}, \tilde{x})) = F_\infty$ since any such map could not possibly have unique lifting:

$l_1 \cdot l_2 \cdot l_3 \cdots$ and $\{l_1 \cdot l_2 \cdots l_n | n \geq 1\}$ lift to top. indistinguishable points in $p^{-1}(x_0)$

Question: Which subgroups $H \leq \pi_1(X, x_0)$ correspond to generalized covering maps?

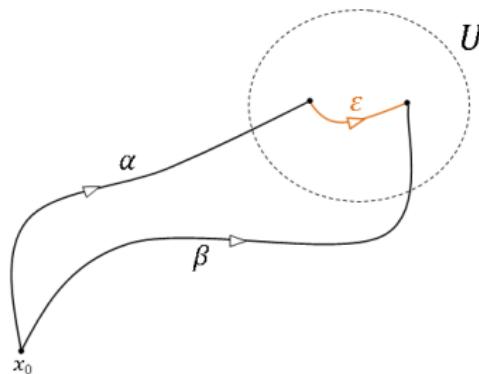
Identifying the topology of generalized coverings

The standard construction: Given $H \leq \pi_1(X, x_0)$, let \tilde{X}_H be the set of equivalence classes $[\alpha]_H$ of paths $\alpha : ([0, 1], 0) \rightarrow (X, x_0)$.

$$\alpha \sim \beta \Leftrightarrow \alpha(1) = \beta(1) \text{ and } [\alpha \cdot \beta^-] \in H$$

Give \tilde{X}_H the **whisker topology** generated by basic sets

$$B([\alpha]_H, U) = \{[\alpha \cdot \epsilon]_H \mid \text{where } \text{Im}(\epsilon) \subset U\} \text{ for open } U \subseteq X$$



Identifying the topology of generalized coverings

Definition: A map $f : X \rightarrow Y$ has the **unique path lifting property (UPL)** if whenever $f \circ \alpha = f \circ \beta$ for paths $\alpha, \beta : [0, 1] \rightarrow X$ such that $\alpha(0) = \beta(0)$, then $\alpha = \beta$.

Lemma: [Fischer,Zastrow,07] If the endpoint projection $p_H : \tilde{X}_H \rightarrow X$, $p_H([\alpha]_H) = \alpha(1)$ has UPL, then it is a generalized covering corresponding to H .

Identifying the topology of generalized coverings

Definition: A map $f : X \rightarrow Y$ has the **unique path lifting property (UPL)** if whenever $f \circ \alpha = f \circ \beta$ for paths $\alpha, \beta : [0, 1] \rightarrow X$ such that $\alpha(0) = \beta(0)$, then $\alpha = \beta$.

Lemma: [Fischer,Zastrow,07] If the endpoint projection $p_H : \widetilde{X}_H \rightarrow X$, $p_H([\alpha]_H) = \alpha(1)$ has UPL, then it is a generalized covering corresponding to H .

Lemma: If $p : \widehat{X} \rightarrow X$ is a generalized covering such that $H = p_*(\pi_1(\widehat{X}, \hat{x}))$, then

$$\begin{array}{ccc} \widehat{X} & \xrightarrow[\cong]{\exists \hat{p}} & \widetilde{X}_H \\ & \searrow p & \swarrow p_H \\ & X & \end{array}$$

and thus $p_H : \widetilde{X}_H \rightarrow X$ has UPL.

Identifying the topology of generalized coverings

Theorem: For any subgroup $H \leq \pi_1(X, x_0)$, the following are equivalent:

1. There is a generalized covering $p : \widehat{X} \rightarrow X$ such that $H = p_*(\pi_1(\widehat{X}, \hat{x}))$,
2. $p_H : \widetilde{X}_H \rightarrow X$ is a generalized covering,
3. $p_H : \widetilde{X}_H \rightarrow X$ has UPL.

Identifying the topology of generalized coverings

Theorem: For any subgroup $H \leq \pi_1(X, x_0)$, the following are equivalent:

1. There is a generalized covering $p : \widehat{X} \rightarrow X$ such that $H = p_*(\pi_1(\widehat{X}, \hat{x}))$,
2. $p_H : \widehat{X}_H \rightarrow X$ is a generalized covering,
3. $p_H : \widehat{X}_H \rightarrow X$ has UPL.

Refined Question: For which H does $p_H : \widehat{X}_H \rightarrow X$ have UPL?

Identifying the topology of generalized coverings

Theorem: For any subgroup $H \leq \pi_1(X, x_0)$, the following are equivalent:

1. There is a generalized covering $p : \widehat{X} \rightarrow X$ such that $H = p_*(\pi_1(\widehat{X}, \hat{x}))$,
2. $p_H : \widehat{X}_H \rightarrow X$ is a generalized covering,
3. $p_H : \widehat{X}_H \rightarrow X$ has UPL.

Refined Question: For which H does $p_H : \widehat{X}_H \rightarrow X$ have UPL?

Certain cases have been confirmed [Brazas, Fabel,13][Fischer, Repovs, Virk, Zastrow,11][Fischer, Zastrow,07].

1. If $H = \pi^s(\mathcal{U}, x_0)$ is a Spanier group,
2. If $H = \ker(\pi_1(X, x_0) \rightarrow \check{\pi}_1(X, x_0))$,
3. If X is homotopy path-Hausdorff relative to H (i.e. closed in $\pi_1^{qtop}(X, x_0)$),
4. If $H = \bigcap_j H_j$ where each $p_j : \widehat{X}_{H_j} \rightarrow X$ has UPL.

Main Result

We characterize UPL for $p_H : \widetilde{X}_H \rightarrow X$ using a “sequential closure” type property for fundamental groups.

Main Result

We characterize UPL for $p_H : \widetilde{X}_H \rightarrow X$ using a “sequential closure” type property for fundamental groups.

We consider a 1-dim. Peano continuum $\mathbb{D} \subset \mathbb{R}^2$,

a special free subgroup $\mathbb{F} \subset \pi_1(\mathbb{D}, d_0)$ and a *limit point* element $g_\infty \notin \mathbb{F}$,
and maps $f : (\mathbb{D}, d_0) \rightarrow (X, x_0)$ that separate \mathbb{F} and g_∞ .

Main Result

We characterize UPL for $p_H : \tilde{X}_H \rightarrow X$ using a “sequential closure” type property for fundamental groups.

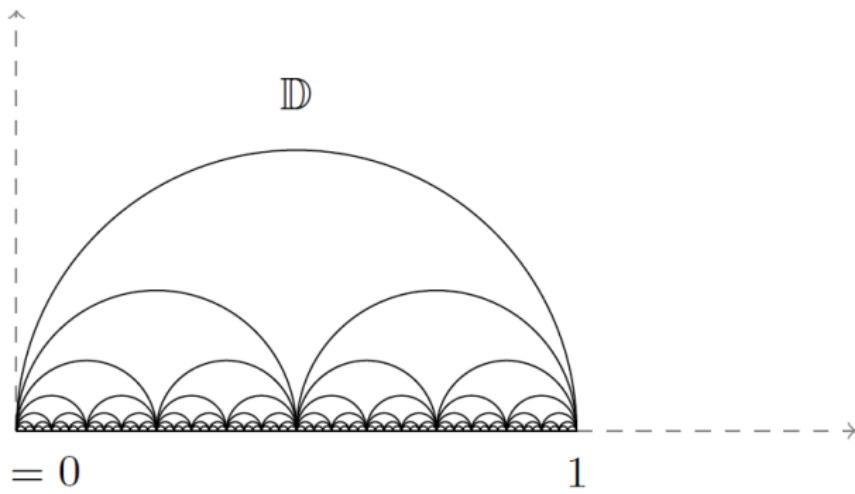
We consider a 1-dim. Peano continuum $\mathbb{D} \subset \mathbb{R}^2$,

a special free subgroup $\mathbb{F} \subset \pi_1(\mathbb{D}, d_0)$ and a *limit point* element $g_\infty \notin \mathbb{F}$,
and maps $f : (\mathbb{D}, d_0) \rightarrow (X, x_0)$ that separate \mathbb{F} and g_∞ .

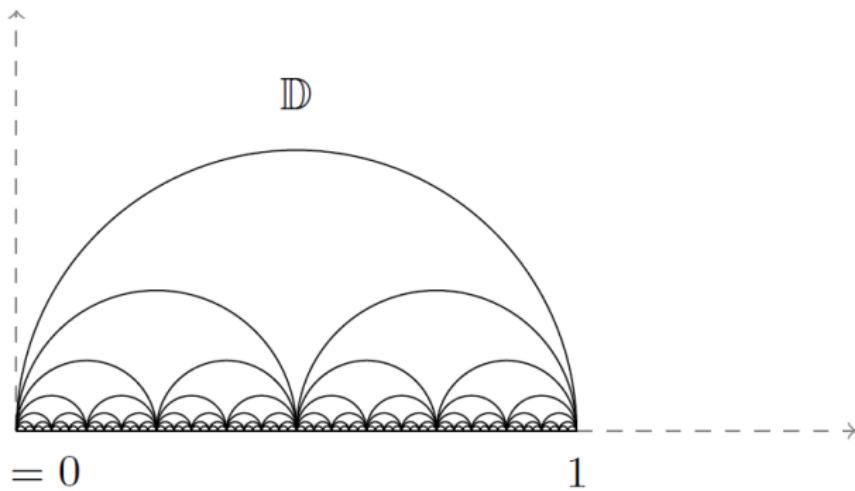
Theorem: For any subgroup $H \leq \pi_1(X, x_0)$, the following are equivalent:

1. $p_H : \tilde{X}_H \rightarrow X$ has the unique path lifting property,
2. $f_*(\mathbb{F}) \subseteq H \Rightarrow f_*(g_\infty) \in H$ for every map $f : \mathbb{D} \rightarrow X$.

The space \mathbb{D}



The space \mathbb{D}



For each dyadic rational $\frac{2^{j-1}}{2^n} \in (0, 1)$, we add a semicircle of radius $\frac{1}{2^n}$.

The space \mathbb{D}

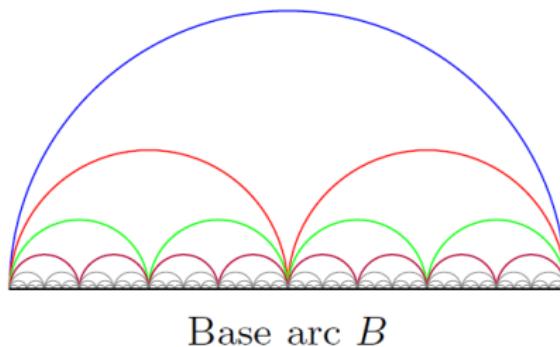
$\mathbb{D}(1)$ - level 1

$\mathbb{D}(2)$ - level 2

$\mathbb{D}(3)$ - level 3

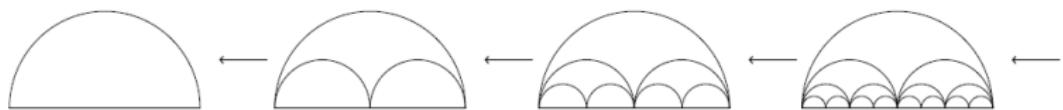
$\mathbb{D}(4)$ - level 4

...



$$\mathbb{D} = B \cup \bigcup_{n \geq 1} \mathbb{D}(n)$$

The space \mathbb{D}



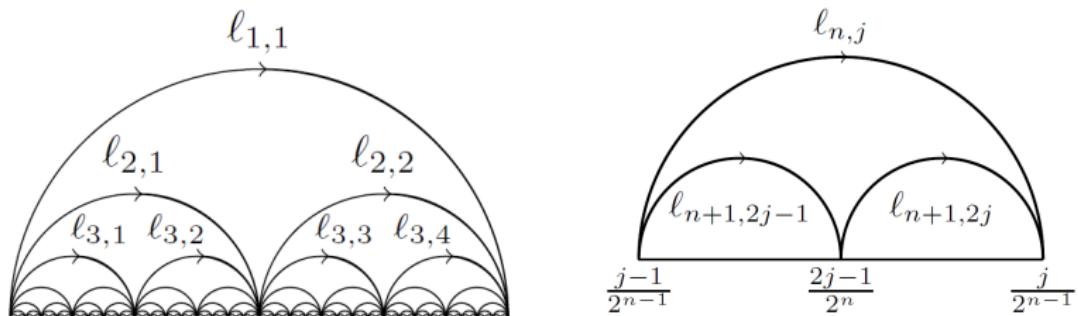
$$\mathbb{D} = \varprojlim_n \left[B \cup \bigcup_{k=1}^n \mathbb{D}(k) \right]$$

Since \mathbb{D} is a one-dimensional, planar Peano continuum, we may inject $\pi_1(\mathbb{D}, d_0)$ into its first shape group.

$$\pi_1(\mathbb{D}, d_0) \hookrightarrow \varprojlim_n \pi_1 \left(B \cup \bigcup_{k=1}^n \mathbb{D}(k), d_0 \right) = \varprojlim_n F_{2^{n+1}-1}$$

Paths in \mathbb{D}

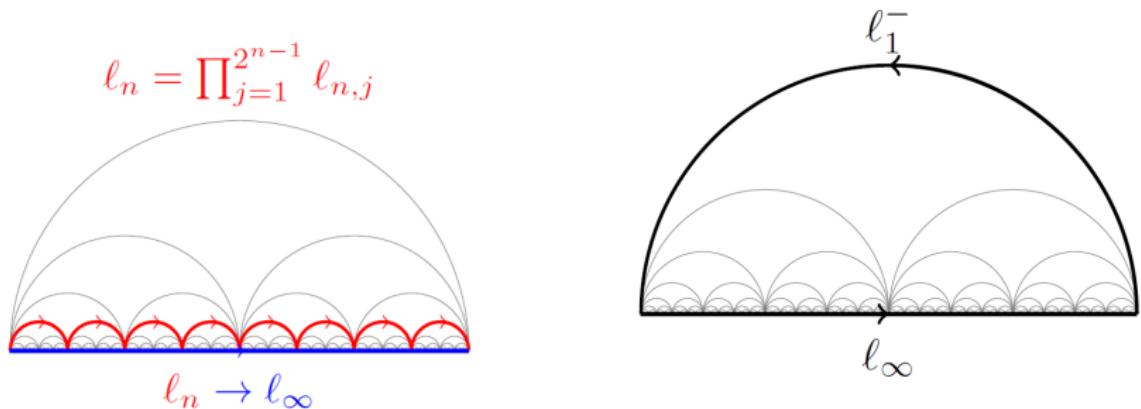
Let $\ell_{n,j}$ be the path which traverses the j -th semicircle of the n -th level.



A **standard path** in \mathbb{D} is a path of the form $\ell_{n,j}$ or its reverse $(\ell_{n,j})^-$.

Paths in \mathbb{D}

Let ℓ_n be the path traversing the n -th level and ℓ_∞ be the unit speed path on the base.



$$g_\infty = [\ell_\infty \cdot \ell_1^-] \in \pi_1(\mathbb{D}, d_0).$$

Warm up: Homotopy path-Hausdorff

The homotopy path-Hausdorff property is stronger than the unique path lifting property.

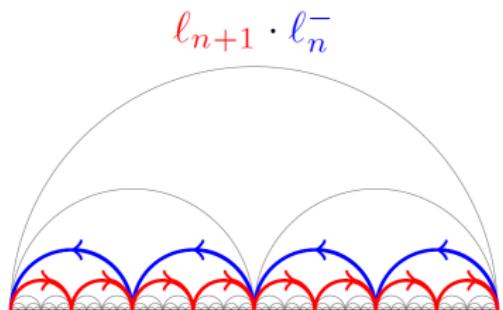
Definition: A locally path-connected metric space X is **homotopy path-Hausdorff relative to H** \Leftrightarrow for every uniformly convergent sequence of loops $\alpha_n \rightarrow \alpha$ where $[\alpha_n] \in H$, $n \geq 1$, then $[\alpha] \in H$.

The subgroup $\mathbb{S} \leq \pi_1(\mathbb{D}, d_0)$

\mathbb{S} is the free subgroup

$$\mathbb{S} = \langle [\ell_{n+1} \cdot \ell_n^-] \mid n \geq 1 \rangle.$$

Notice $g_\infty \notin \mathbb{S}$



The subgroup $\mathbb{S} \leq \pi_1(\mathbb{D}, d_0)$

\mathbb{S} is the free subgroup

$$\mathbb{S} = \langle [\ell_{n+1} \cdot \ell_n^-] \mid n \geq 1 \rangle.$$

Notice $g_\infty \notin \mathbb{S}$



Theorem: For any subgroup $H \leq \pi_1(X, x_0)$, the following are equivalent:

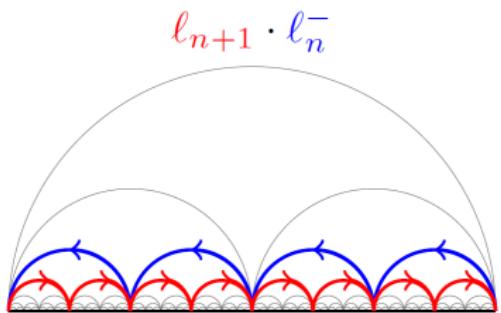
1. X is homotopically path-Hausdorff relative to H ,
2. $f_*(\mathbb{S}) \subseteq H \Rightarrow f_*(g_\infty) \in H$ for every map $f : \mathbb{D} \rightarrow X$.

The subgroup $\mathbb{S} \leq \pi_1(\mathbb{D}, d_0)$

\mathbb{S} is the free subgroup

$$\mathbb{S} = \langle [\ell_{n+1} \cdot \ell_n^-] \mid n \geq 1 \rangle.$$

Notice $g_\infty \notin \mathbb{S}$



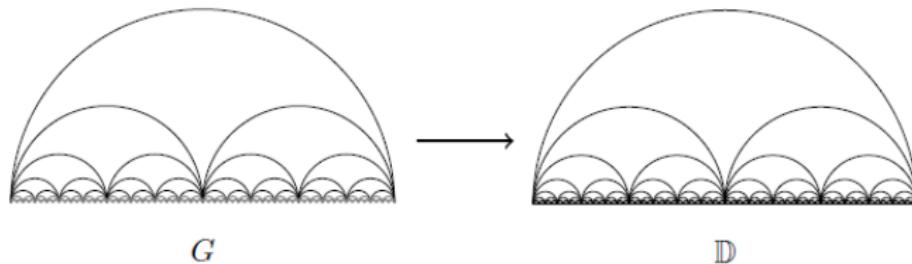
Theorem: For any subgroup $H \leq \pi_1(X, x_0)$, the following are equivalent:

1. X is homotopically path-Hausdorff relative to H ,
2. $f_*(\mathbb{S}) \subseteq H \Rightarrow f_*(g_\infty) \in H$ for every map $f : \mathbb{D} \rightarrow X$.

Idea of proof: $\ell_n \cdot \ell_1^- \rightarrow \ell_\infty \cdot \ell_1^-$ and $f_*([\ell_n \cdot \ell_1^-]) \in f_*(\mathbb{S}) \subseteq H$.

The subgroup $\mathbb{F} \leq \pi_1(\mathbb{D}, d_0)$

Consider $G = \bigcup_{n \geq 1} \mathbb{D}(n)$ with the CW-topology.

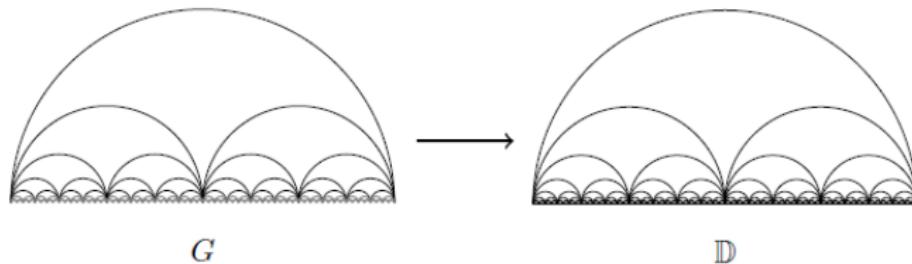


The subgroup \mathbb{F} is the image of the inclusion

$$\mathbb{F} = (\pi_1(G, d_0) \hookrightarrow \pi_1(\mathbb{D}, d_0))$$

The subgroup $\mathbb{F} \leq \pi_1(\mathbb{D}, d_0)$

Consider $G = \bigcup_{n \geq 1} \mathbb{D}(n)$ with the CW-topology.



The subgroup \mathbb{F} is the image of the inclusion

$$\mathbb{F} = (\pi_1(G, d_0) \hookrightarrow \pi_1(\mathbb{D}, d_0))$$

$[\alpha] \in \mathbb{F} \Leftrightarrow \alpha$ is homotopic to a **finite** concatenation of standard paths.

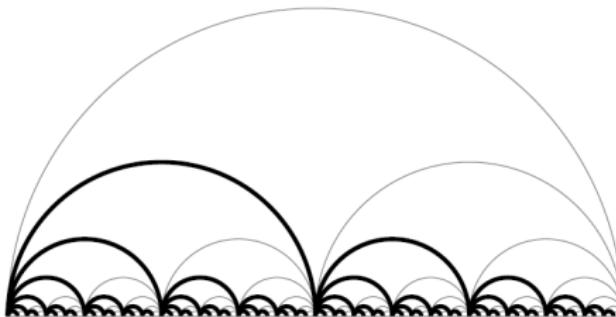
The paths δ_t

Every real number $t \in [0, 1]$ has a unique binary decimal expansion $t = 0.a_1 a_2 a_3 \dots$, $a_n \in \{0, 1\}$ which does not terminate in 1's.

The paths δ_t

Every real number $t \in [0, 1]$ has a unique binary decimal expansion $t = 0.a_1 a_2 a_3 \dots$, $a_n \in \{0, 1\}$ which does not terminate in 1's.

Construct a path δ_t in \mathbb{ID} from $d_0 = (0, 0)$ to $(t, 0)$ as follows:

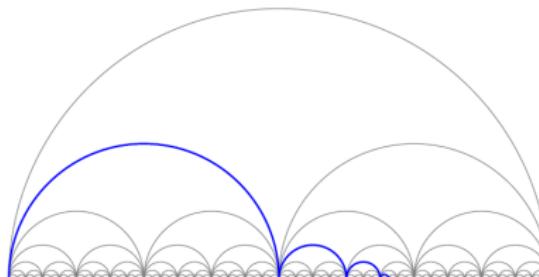


Let $\delta_t = \prod_{n=1}^{\infty} \alpha_n$ where $\alpha_n = \begin{cases} \ell_{n+1, j_t} & \text{if } a_n = 1 \\ \text{constant} & \text{if } a_n = 0 \end{cases}$

The paths δ_t

$$t = \frac{1}{\sqrt{2}} = 0.1011010100\dots$$

δ_t for $t = \frac{1}{\sqrt{2}}$

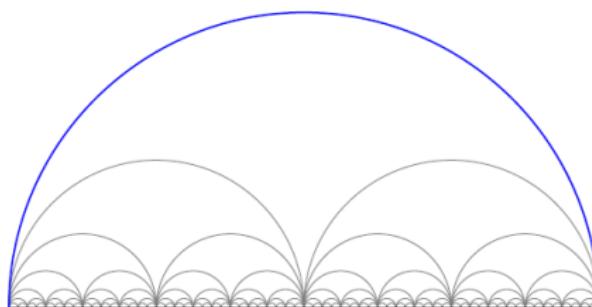


$$\frac{1}{2^1} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^6} + \frac{1}{2^8} + \dots = \frac{1}{\sqrt{2}}$$

The paths δ_t

$t = 1$

δ_t for $t = 1$

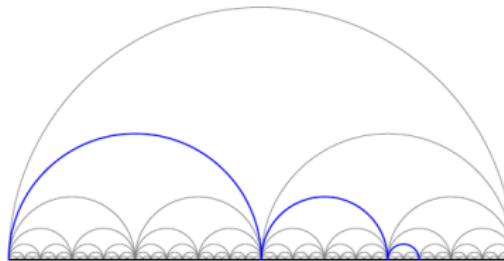


$1 = 1.000\dots$

The paths δ_t

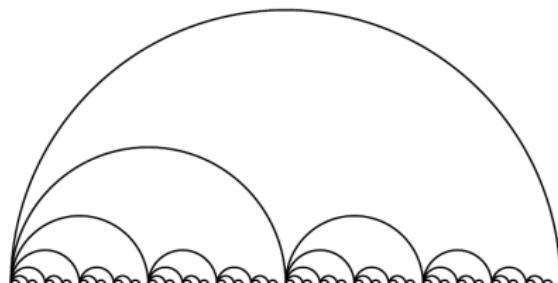
If $t \in (0, 1)$, then δ_t is homotopic to a finite concatenation of standard paths $\Leftrightarrow t$ is a dyadic rational.

δ_t for $t = \frac{13}{16}$

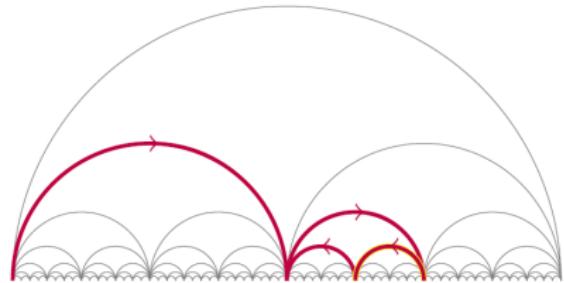


$$\frac{13}{16} = 0.1101$$

The subgroup $\mathbb{F} \leq \pi_1(\mathbb{D}, d_0)$

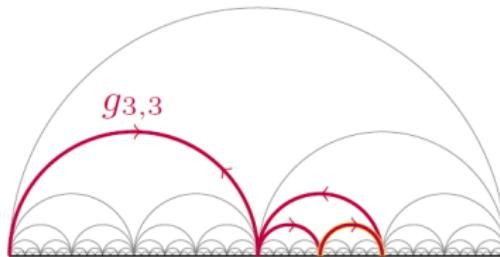


A maximal tree in G



Generators of $\pi_1(G, d_0)$

The subgroup $\mathbb{F} \leq \pi_1(\mathbb{D}, d_0)$

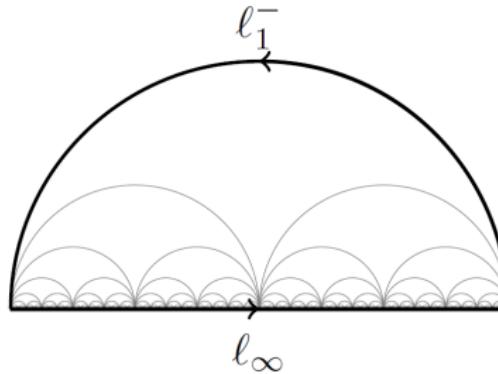


$$g_{n,j} = \left(\delta_{\frac{2j-1}{2^n}} \right) \cdot (\ell_{n+1,2j}) \cdot \left(\delta_{\frac{2j}{2^n}} \right)^-$$

$$\mathbb{F} = \langle g_{n,j} \mid n \geq 1, 1 \leq j \leq 2^{n-1} \rangle$$

The element g_∞

$$g_\infty = [\ell_\infty \cdot (\ell_1)^-]$$



Notice that $g_\infty \notin \mathbb{F}$

Idea of the proof

Theorem: For any subgroup $H \leq \pi_1(X, x_0)$, the following are equivalent:

1. $p_H : \tilde{X}_H \rightarrow X$ has the unique path lifting property,
2. $f_*(\mathbb{F}) \subseteq H \Rightarrow f_*(g_\infty) \in H$ for every map $f : \mathbb{D} \rightarrow X$.

Idea of the proof

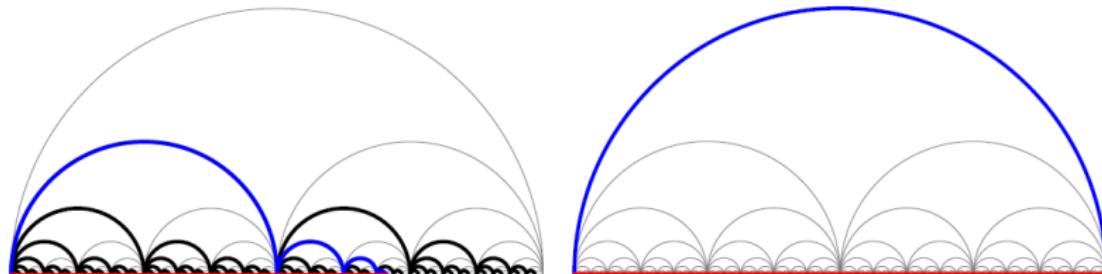
Theorem: For any subgroup $H \leq \pi_1(X, x_0)$, the following are equivalent:

1. $p_H : \tilde{X}_H \rightarrow X$ has the unique path lifting property,
2. $f_*(\mathbb{F}) \subseteq H \Rightarrow f_*(g_\infty) \in H$ for every map $f : \mathbb{D} \rightarrow X$.

Idea of proof. (1) \Rightarrow (2) Given $f : \mathbb{D} \rightarrow X$ with $f_*(\mathbb{F}) \subseteq H$ and $f_*(g_\infty) \notin H$, consider the path $\alpha(t) = f(t, 0)$ along the base arc.

$$\tilde{\alpha}(t) = [\alpha|_{[0,t]}]_H \text{ and } \beta(t) = [f \circ \delta_t]_H$$

are distinct, continuous lifts $[0, 1] \rightarrow \tilde{X}_H$ of α .

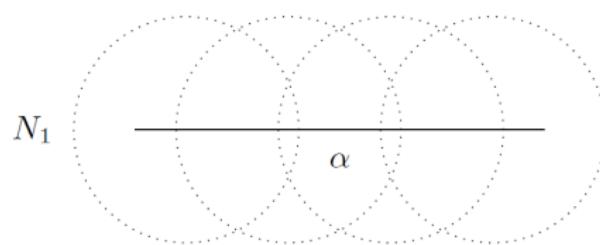


Idea of the proof

(2) \Rightarrow (1) Suppose $\alpha : [0, 1] \rightarrow X$ has a lift $\beta(t) = [\beta_t]_H$ different from $\tilde{\alpha}(t) = [\alpha|_{[0,t]}]_H$
i.e. $[\beta_1]_H \neq [\alpha]_H$. Take a neighborhood of α in the compact-open topology:

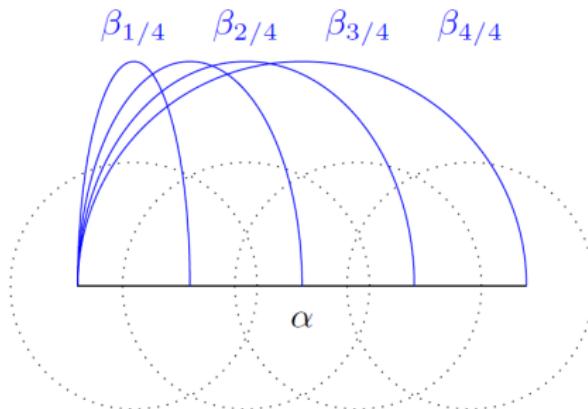
Idea of the proof

(2) \Rightarrow (1) Suppose $\alpha : [0, 1] \rightarrow X$ has a lift $\beta(t) = [\beta_t]_H$ different from $\tilde{\alpha}(t) = [\alpha|_{[0,t]}]_H$ i.e. $[\beta_1]_H \neq [\alpha]_H$. Take a neighborhood of α in the compact-open topology:



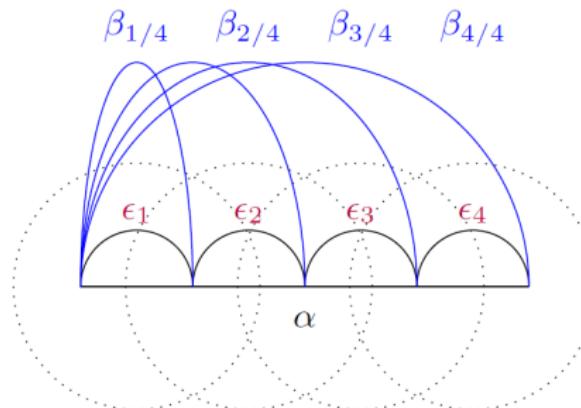
Idea of the proof

(2) \Rightarrow (1) Suppose $\alpha : [0, 1] \rightarrow X$ has a lift $\beta(t) = [\beta_t]_H$ different from $\tilde{\alpha}(t) = [\alpha|_{[0,t]}]_H$
i.e. $[\beta_1]_H \neq [\alpha]_H$.



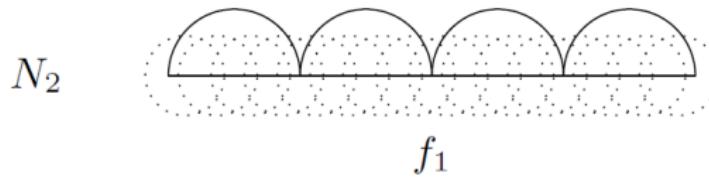
Idea of the proof

(2) \Rightarrow (1) Suppose $\alpha : [0, 1] \rightarrow X$ has a lift $\beta(t) = [\beta_t]_H$ different from $\tilde{\alpha}(t) = [\alpha|_{[0,t]}]_H$
i.e. $[\beta_1]_H \neq [\alpha]_H$.



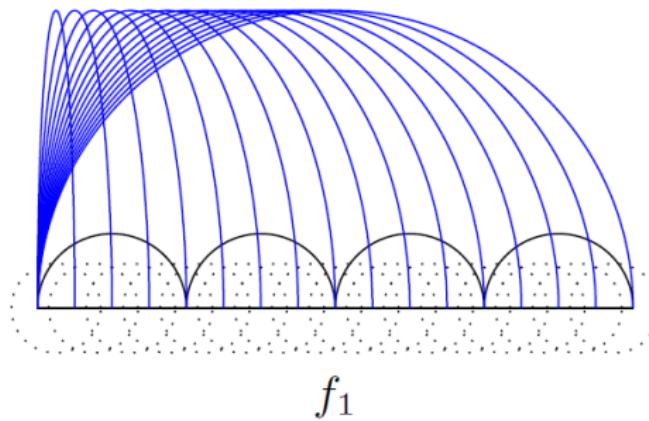
Idea of the proof

(2) \Rightarrow (1) Suppose $\alpha : [0, 1] \rightarrow X$ has a lift $\beta(t) = [\beta_t]_H$ different from $\bar{\alpha}(t) = [\alpha|_{[0,t]}]_H$ i.e. $[\beta_1]_H \neq [\alpha]_H$. Take a smaller neighborhood of α in the compact-open topology:



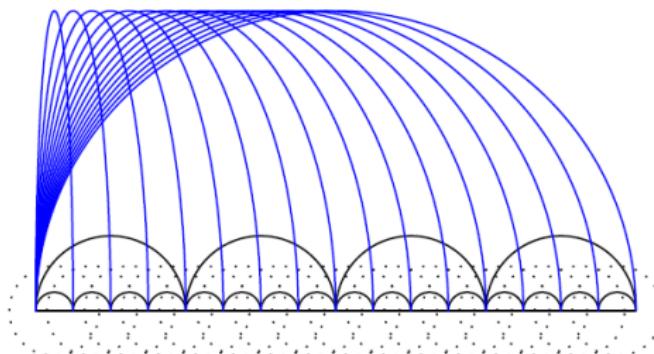
Idea of the proof

(2) \Rightarrow (1) Suppose $\alpha : [0, 1] \rightarrow X$ has a lift $\beta(t) = [\beta_t]_H$ different from $\tilde{\alpha}(t) = [\alpha|_{[0,t]}]_H$
i.e. $[\beta_1]_H \neq [\alpha]_H$.



Idea of the proof

(2) \Rightarrow (1) Suppose $\alpha : [0, 1] \rightarrow X$ has a lift $\beta(t) = [\beta_t]_H$ different from $\tilde{\alpha}(t) = [\alpha|_{[0,t]}]_H$
i.e. $[\beta_1]_H \neq [\alpha]_H$.



f_2

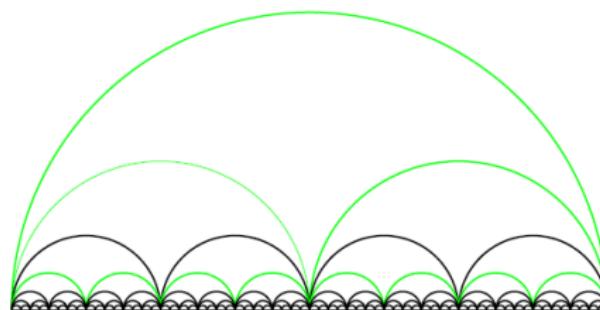
Idea of the proof

(2) \Rightarrow (1) Suppose $\alpha : [0, 1] \rightarrow X$ has a lift $\beta(t) = [\beta_t]_H$ different from $\bar{\alpha}(t) = [\alpha|_{[0,t]}]_H$
i.e. $[\beta_1]_H \neq [\alpha]_H$. Continue inductively using a neighborhood base at α .

f

Idea of the proof

(2) \Rightarrow (1) Suppose $\alpha : [0, 1] \rightarrow X$ has a lift $\beta(t) = [\beta_t]_H$ different from $\tilde{\alpha}(t) = [\alpha|_{[0,t]}]_H$
i.e. $[\beta_1]_H \neq [\alpha]_H$.



$$f : \mathbb{D} \rightarrow X$$

Generalized universal coverings

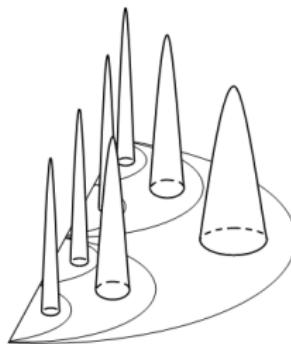
If $H = 1$, then $p : \tilde{X} \rightarrow X$ has the potential to be a generalized universal covering which in many ways provides a suitable replacement for a classical universal coverings.

Generalized universal coverings

If $H = 1$, then $p : \tilde{X} \rightarrow X$ has the potential to be a generalized universal covering which in many ways provides a suitable replacement for a classical universal coverings.

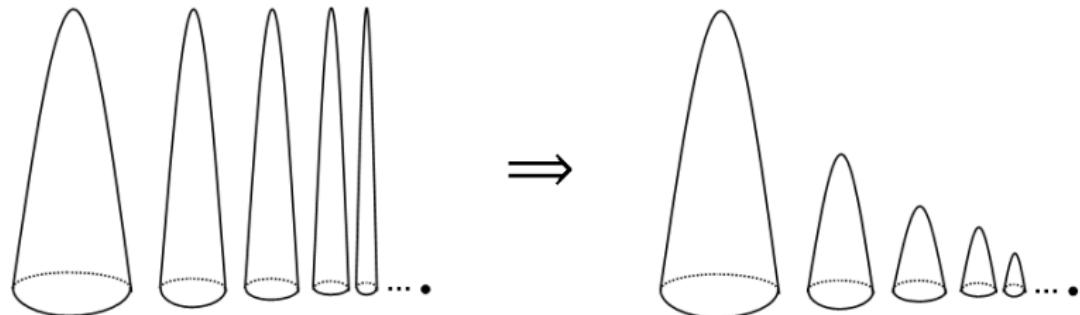
Corollary: For a path-connected metric space X , the following are equivalent:

1. X admits a generalized universal covering,
2. $p : \tilde{X} \rightarrow X$ (standard construction) has UPL,
3. For every map $f : \mathbb{A} \rightarrow X$ from the archipelago-like space below, we must have $g_\infty \in \ker(f_*)$.



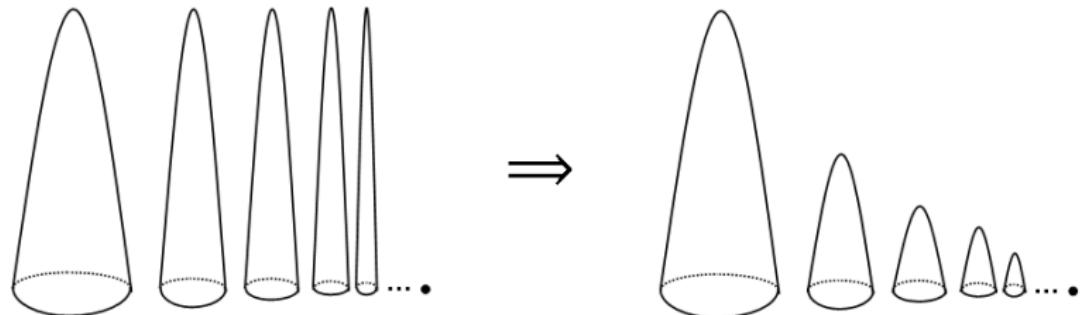
Sufficient conditions and examples

Corollary: Existence of a generalized universal covering is implied by the property (P):
If $f_n : D^2 \rightarrow X$ is a sequence of maps where $f_n|_{S^1} \rightarrow z \in X$, then there exists
 $g_n : D^2 \rightarrow X$ such that $f_n|_{S^1} = g_n|_{S^1}$ and $g_n \rightarrow z$.



Sufficient conditions and examples

Corollary: Existence of a generalized universal covering is implied by the property (P):
If $f_n : D^2 \rightarrow X$ is a sequence of maps where $f_n|_{S^1} \rightarrow z \in X$, then there exists
 $g_n : D^2 \rightarrow X$ such that $f_n|_{S^1} = g_n|_{S^1}$ and $g_n \rightarrow z$.



Property (P) $\Rightarrow \exists$ generalized universal covering \Rightarrow homotopy Hausdorff

Examples

1. The Sombrero space [Fischer, Repovs, Virk, Zastrow, 11] and inverted sombrero [Zastrow, 11] spaces admit a generalized universal covering since they have property (P) [Conner, et. al., 08].

Examples

1. The Sombrero space [Fischer, Repovs, Virk, Zastrow, 11] and inverted sombrero [Zastrow, 11] spaces admit a generalized universal covering since they have property (P) [Conner, et. al., 08].
2. If $\pi_1(X, x_0)$ is free (or more generally, n -slender), then X admits a generalized universal covering.

Examples

1. The Sombrero space [Fischer, Repovs, Virk, Zastrow, 11] and inverted sombrero [Zastrow, 11] spaces admit a generalized universal covering since they have property (P) [Conner, et. al., 08].
2. If $\pi_1(X, x_0)$ is free (or more generally, n -slender), then X admits a generalized universal covering.
3. Relative case: If X admits a generalized universal covering and $\inf\{diam(\alpha)|[\alpha] \in H\} > 0$, then p_H has UPL.

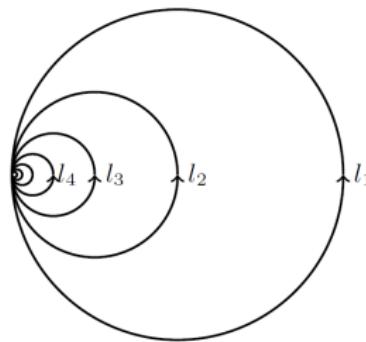
Examples

1. The Sombrero space [Fischer, Repovs, Virk, Zastrow, 11] and inverted sombrero [Zastrow, 11] spaces admit a generalized universal covering since they have property (P) [Conner, et. al., 08].
2. If $\pi_1(X, x_0)$ is free (or more generally, n -slender), then X admits a generalized universal covering.
3. Relative case: If X admits a generalized universal covering and $\inf\{diam(\alpha)|[\alpha] \in H\} > 0$, then p_H has UPL.

Example: Take $X = \mathbb{ID}$ and $H = \mathbb{S}$.

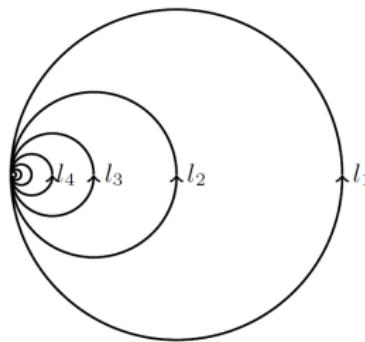
\mathbb{ID} is not homotopy path-Hausdorff relative to \mathbb{S} ,
but $p_{\mathbb{S}} : \widetilde{\mathbb{ID}}_{\mathbb{S}} \rightarrow \mathbb{ID}$ has UPL since $\min\{diam(\alpha)|[\alpha] \in \mathbb{S}\} = 1$.

Necessary condition for \mathbb{H}



Let $F_\infty = \langle [\ell_n] | n \geq 1 \rangle \subseteq \pi_1(\mathbb{H}, x_0)$.

Necessary condition for \mathbb{H}



Let $F_\infty = \langle [\ell_n] | n \geq 1 \rangle \subseteq \pi_1(\mathbb{H}, x_0)$.

Corollary: If $K \leq \pi_1(\mathbb{H}, x_0)$ and $p_K : \widetilde{\mathbb{H}}_K \rightarrow \mathbb{H}$ has UPL, then H must satisfy the property: For every map $f : \mathbb{H} \rightarrow \mathbb{H}$ such that $f_*(F_\infty) \subseteq K$, then $f_*(\pi_1(\mathbb{H}, x_0)) \subseteq K$.

Thank you!